Goal in Risk

Now we are looking on the crossword clue for: Goal in Risk.
it’s A 12 letters crossword puzzle definition.
Next time, try using the search term “Goal in Risk crossword” or “Goal in Risk crossword clue” when searching for help with your puzzle on the web. See the possible answers for Goal in Risk below.

Did you find what you needed?
We hope you did!. If you are still unsure with some definitions, don’t hesitate to search them here with our crossword puzzle solver.

Possible Answers:

CONQUEST.

Last seen on: Universal Crossword – Feb 20 2020

Random information on the term “CONQUEST”:

Density functional theory (DFT) is a computational quantum mechanical modelling method used in physics, chemistry and materials science to investigate the electronic structure (or nuclear structure) (principally the ground state) of many-body systems, in particular atoms, molecules, and the condensed phases. Using this theory, the properties of a many-electron system can be determined by using functionals, i.e. functions of another function, which in this case is the spatially dependent electron density. Hence the name density functional theory comes from the use of functionals of the electron density. DFT is among the most popular and versatile methods available in condensed-matter physics, computational physics, and computational chemistry.

DFT has been very popular for calculations in solid-state physics since the 1970s. However, DFT was not considered accurate enough for calculations in quantum chemistry until the 1990s, when the approximations used in the theory were greatly refined to better model the exchange and correlation interactions. Computational costs are relatively low when compared to traditional methods, such as exchange only Hartree–Fock theory and its descendants that include electron correlation. Since, DFT has become an important tool for methods of nuclear spectroscopy such as Mössbauer spectroscopy or perturbed angular correlation, in order to understand the reason of specific electric field gradients in crystals.

CONQUEST on Wikipedia