Not fem

Now we are looking on the crossword clue for: Not fem.
it’s A 7 letters crossword puzzle definition.
Next time, try using the search term “Not fem crossword” or “Not fem crossword clue” when searching for help with your puzzle on the web. See the possible answers for Not fem below.

Did you find what you needed?
We hope you did!. If you are still unsure with some definitions, don’t hesitate to search them here with our crossword puzzle solver.

Possible Answers:

MASC.

Last seen on: Wall Street Journal Crossword – Jan 15 2019 – Understand?

Random information on the term “MASC”:

Mammary analogue secretory carcinoma (MASC) (also termed MASCSG; the “SG” subscript indicates salivary gland)) is a salivary gland neoplasm that shares a genetic mutation with certain types of breast cancer. MASCSG was first described by Skálová et al. in 2010.[1] The authors of this report found a chromosome translocation in certain salivary gland tumors that was identical to the (12;15)(p13;q25) fusion gene mutation found previously in secretory carcinoma, a subtype of invasive ductal carcinoma of the breast.


New Crossword clues and help App now available in the App Store and Google Play Store!
Crossword clues app Android Crossword clues app iphone iOs

The translocation found in MASCSG occurs between the ETV6 gene located on the short arm (designated p) of chromosome 12 at position p13.2 (i.e. 12p13.2) and the NTRK3 gene located on the long arm (designated q) of chromosome 15 at position q25.3 (i.e. 15q25.3) to create the (12;15)(p13;q25) fusion gene, ETV6-NTRK3. This mutant fusion gene also occurs in congenital fibrosarcoma, congenital mesoblastic nephroma, secretory breast cancer (also termed juvenile breast cancer), acute myelogenous leukemia, ALK-negative Inflammatory myofibroblastic tumour, and radiation-induced papillary thyroid carcinoma.[2][3][4][5][6] The MASCSG gene codes for the transcription factor protein, ETV6, which suppresses the expression of, and thereby regulates, various genes that in mice are required for normal hematopoiesis as well as the development and maintenance of the vascular network.[7]

MASC on Wikipedia